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We have tabulated the form of the coefficients gl(x) and g~.(x) as well as the 
boundary values [a, b] of the Fokker-Planck equation 

OP(x, t) 0 02 
at -- ~x [gl(x)f(x, t)] + ~ [g~(x)P(x, t)], a < x < b 

for which the solution can be written as an eigenfunction expansion in the 
classical orthogonal polynomials. We also discuss the problem of finding 
solutions in terms of the discrete classical polynomials for the differential 
difference equations of stochastic processes. 

KEY WORDS:  Fokker-Planck equation; stochastic processes; orthogonal 
polynomials. 

1. I N T R O D U C T I O N  

The starting point  of  many  investigations of  t ime-dependent  phenomena  

in the statistical description o f  physical processes is the master  equat ion  m 

OP(x, t I Xo)/at = f A(x,  x ' )P(x ' ,  t [ Xo) dx'  (1) 

Here P(x,  t I Xo) is the condi t ional  probabi l i ty  that  the system which started 

in state x 0 at t ime zero evolves to state x at t ime t, and A(x,  x')  is the 
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transition rate from x' to x. Often this nonlocal integral equation is approxi- 
mated by a local differential equation. If the transition rate is expanded 
in a Kramers-Moyal  series (2) about x = x' and one truncates at the second 
term, the Fokker-Planck (FP) equation is obtained m 

aP(x, t LXo) a S a 
at -- ax 2 [gz(x)P(x, t [ Xo)] -- Yxx [gl(x)P(x, t l Xo)] (2) 

with 

g~(x) = f (x -- x') A(x,  x') dx', gz(x) = f (x -- x') 2 A(x, x') dx' (3) 

The purpose of this paper is to classify the solutions of this equation 
with appropriate boundary conditions which can be related to the classical 
orthogonal polynomials. That is, we wish to find the coefficients g2(x) and 
g~(x) which permit one to express the solution of Eq. (2) as an eigenfunction 
expansion in these polynomials. We place two physical restrictions on the 
system: First, only systems that conserve probability are considered, and 
second, we require that a nonzero equilibrium solution exist. 

Several examples of the Fokker-Planck equation (2) are known which 
have solutionsinterms of classical orthogonal polynomials. Thus, the Ornstein- 
Uhlenbeck process on an infinite l ine has an eigenfunction expansion in 
terms of Hermite polynomials. (31 The vibrational relaxation of harmonic 
oscillators in the continuous (high temperature) limit leads to an expansion 
in terms of Laguerre polynomials. (4) The energy relaxation of a hard-sphere 
Rayleigh gas (Brownian motion) also has a solution in terms of a Laguerre 
polynomial expansion/a) A number of other examples can be found in the 
literature.a. 3) 

We felt it would be useful to find and tabulate the values of g~(x) and 
g2(x) and the appropriate boundary conditions which yield all the members of 
the set of FP equations with orthogonal polynomial solutions. Hopefully, 
this will eliminate much unproductive labor in the future by other workers in 
hunting for what might be nonexisting polynomial solutions of FP equations. 

2. F O K K E R - P L A N C K  E Q U A T I O N S  

In this section we consider the forward Kolmogorov equation II/for the 
conditional probability P(x, t I Xo) 

a 2 a aP(x, t lx0) a ~< x ~< b 
ax ~ [g~(x)P(x, t l x0)] -- Jx  [ga(x)P(x, t l xo)] -- ~t ' 

(4) 

For  the initial condition on P(x, t I Xo) we take 

P(x, 01Xo) = 3(x -- Xo) (5) 
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To conserve probability in the space a ~ x ~< b, we use the boundary 
condition 

[@/8x)g2(x)P(x, t ] Xo) -- gl(x)P(x, t i x0)]x=a.0 = 0 (6) 

which corresponds to zero flux at the boundaries. The probability is normal- 
ized to unity: 

f f  P(x, t dx 1 (7) I Xo) 

The normalized equilibrium solution of Eq. (4) with the boundary conditions 
of Eq. (6) is 

( C g2 (Y) - -  g l ( Y ) -  \ 
P , (x)  - -  P(x ,  oo [xo) = _exp - -  ) -g~-@5 ay] 

x I s  ~ [exp (x  & , ( y ) _  gt(Y)dy] dx1-1 (8) 

where the primes indicate derivatives with respect to the argument. 
In more compact form Eq. (4) can be rewritten as 

~f'P = aP/at (9) 

where 
8 [ 8 e(x, tlXo).] (10) 

~ P  ~-- ~x P~(x)g~(x) 8x e~,(x) 

The differential operator s with the boundary conditions of Eq. (6) is not 
self-adjoint. We define 

G(x, t l Xo) ~ e21/2(x)e(x, t l Xo) (11) 

Then G satisfies 

~-~G 8G/St (12) 

where 

d 2 d 1 l c~ ~ g~(x) ~x ~ q- gff(x) dx @ 2 g~(x) -- gl'(X) -- [g2'(x) -- ga(x)]21 )-g- ~x) t ( 13 ) 
1 

and cp with the boundary conditions (6) is self-adjoint. The solution of Eq. 
(12) can therefore be expressed as an eigenfunction expansion in terms of 
the eigenfunctions Gn(x) and eigenvalues Am of ~ .  Thus 

G(x, t [ Xo) = ~ c.(xo) G.(x)e a,/' (14) 
n 

where 

~ G .  = A.G~ (15) 
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The G~ must satisfy the boundary conditions (6). Since the differential 
operator .L~ together with the boundary conditions is self-adjoint, the G~ 
form a complete orthogonal set: 

f fGn (x )  G.~(x) = (16) dx hn6..~ 

Using the initial condition 

G(x, 0Ix0)  = P71/2(x) 3(x -- Xo) (17) 

and Eq. (16) we can evaluate cn(Xo) to find 

~(x,  t l Xo) = Y, [C~(x)Gdxo) P;1/~(xo)e~,,'lIM (18) 
n 

We are interested in the set of FP equations for which 

G,(x)G,,dx) = W(x)f ,(x)f~(x) (19) 

wherefn(x) is a monic [f0(x) = 1] polynomial of degree n. The polynomials 
fn(x) form a complete orthogonal set with respect to the weight function 
W(x) on the interval [a, b]. Since we have specified the existence of a nonzero 
equilibrium distribution, we must have )t o = 0. It then follows from Eqs. (8), 
(11), (18), and (19) that 

W(x) = P~(x) (20) 

To determine the g~(x) and gl(x) that will give rise to a particular set of 
polynomials, it is convenient to define 

H(x, t] Xo) =~ P~(x)P(x, t l Xo) (21) 

Then from Eqs. (8) and (10) 

. Y H  : OH/at (22) 

where 

~- ~ g~(x)(d2/dx 2) + g~(x)(d/dx) (23) 

The coefficients g2(x) and gl(x) are now chosen such that 

J f ~  = ;~f~ (24) 

In terms of the polynomialsfi, and the eigenvalues An, we then obtain 

P(x, t [ Xo) = 2 [P~(x)f~(x)f~(xo) ea.t/h~] (25) 
n 
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where hn is defined by Eq. (16). In Table 1 we list the range [a, b], the coeffi- 
cients, eigenvalues, and equilibrium solutions for the classical orthogonal 
polynomials. (71 It is interesting to note that gl(X) is linear in x in all cases. 
This has important connotations for the physical processes described by 
FP equations of the type discussed here. (~1 

The sum in Eq. (5) has been evaluated in closed form for only two of the 
polynomials. If the fn(x) are the Hermite polynomials] s) then 

1 ( x  - -  Xoe 2i)2 ] (26) 
P(x , t ]Xo)  = [2r exp[--  1 - - - ~  J 

For the generalized Laguerre polynomials (s) 

(x-f-] ~/2 e -x e~t /2 (exp x + Xo] I~( 2(XXog t)1/2 ) P(x, t [ Xo) (27) \XoJ 1 - - e  -~ b5_2 ~! ~ j 

where I~(z) is the modified Bessel function. 
If  one encounters a Fokker-Planck equation of the form 

02 0 [b~(x)P(x, t l x0)] aP(x, t i Xo) (28) Ox~ [b2(x)P(x ,  t l Xo)] - ~ - a t  

where b2 and b~ do not correspond to entries in Table I, a transformation of 
variables may bring Eq. (28) into one of the standard forms. For the most 
general transformation we let 

y=~ dx' [g2(x')/b2(x')] ~/2 (29) 

Then, if we define p(y, t [ Yo) -~ P(x, t I Xo), we find 

0" 0 Op(y, t l Yo) (30) 
8y2 [g2(Y)P(Y, t! Yo)] -- ~ [gI(Y)P(Y, t [ Yo)] -- Ot 

provided that 

and 

1 [ b2(x)]l/2 [2b2'(x) l b2'(x) [g2(x)] 1/2 
i g2'(x) [g2(x)] -~- --hi(x)  2 g ~ x ) ]  b2(x)] 

= 2g2 ' (y)  - g l ' ( y )  ( 3 1 )  

b'~(x) --  bl'(x) = g;(y) --  gi'(Y) (32) 

and where the left-hand sides of Eqs. (31) and (32) must be expressed as 
functions of y. It should be noted that the transformation (29) may also 
cause a change in the value of the boundary points a, b. This needs to be 
checked before the results of Table ! can be applied. 



T
ab

le
 

I.
 

P
ol

yn
om

ia
l 

C
oe

ff
ic

ie
nt

s,
 E

ig
en

va
lu

es
, 

R
an

ge
 [

a,
 b

], 
an

d 
Eq

ui
lib

ri
um

 S
ol

ut
io

ns
'fo

r 
th

e 
C

la
ss

ic
al

 O
rt

ho
go

na
l 

Po
ly

no
m

ia
ls

 

a 
b 

g2
(x

) 
gz

(X
) 

P
~

(x
) 

)t,
~ 

h,
~ 

2 ~
+

a+
z 

F
(n

+
o~

+
l)

F
(n

+
3+

l)
 

P
~7

,t3
~(

x)
, 

--
1 

1 
1 

--
 

x 
2 

/3
 --

 c
~ -

- 
(c

~ +
fl

 +
2

)x
 

(1
 -

- 
x)

~(
1 

+
x

) 
t3

 
--

n(
n 

+
c~

+
3

 
+ 

I)
 

(2
n

+
c~

+
3

+
 1

) 
n!

F
(n

+
~

+
fl

+
l)

 
c~

> 
--

1
,/

3
>

 -
-1

 

(S
ac

ob
i)

 

C
~

I(
x)

, 
--

1 
1 

1 
--

 
x 

z 
--

(2
c~

 +
 

1)
x 

(1
 -

- 
x2

)~
-~

1/
~ 

--
n(

n 
+

 
2c

0 
n!

(n
 

+
 

~)
[F

(c
~)

]~
 

' ~
 :

# 
0 

c~
 >

 
--

1/
2 

(G
eg

en
ba

ue
r)

 

T
.(

x)
 

--
1 

1 
1 

--
 

x 
~ 

--
x 

(1
 -

-.
 x

2)
 -~

/~
 

--
n 

2 
zr

/2
, 

n 
~ 

O
; r

r, 
n 

= 
0 

(C
he

by
sh

ev
, 

fi
rs

t 
ki

nd
) 

U
~(

x)
 

--
1 

1 
1 

--
 

x 
2 

--
3x

 
(l

 
--

 
x'

~)
~/

2 
--

n(
n 

+
 

2)
 

7r
/2

 

(C
he

by
sh

ev
, 

se
co

nd
 k

in
d)

 

P
,~

(x
) 

--
1 

1 
1 

--
 

x 
~ 

--
2x

 
1 

--
n(

n 
+

 
1)

 
2/

(2
n 

+ 
1)

 

(L
eg

en
dr

e)
 

L
~ ~

),
 

c~
 >

 
--

1 
0 

oo
 

x 
~ 

+
 

1 
--

 
x 

e-
~

x 
~ 

--
n 

F(
o~

 +
 

n 
+

 
1)

/n
! 

(G
en

er
al

iz
ed

 

L
ag

ue
rr

e)
 

H
,~

(x
) 

--
~

 
co

 
1 

--
2

x
 

ex
p

--
x

 ~
 

--
2

n
 

V
/~

r2
~n

 ! 

(H
er

m
it

e)
 

.=
 

t-
 

I-
- 

lu
 _r
. 

CI
" 

r gl
. 

rN
 

IB
 

e.
 



Orthogonal Polynomial Solutions of the Fokker-Planck Equation 143 

3. D I F F E R E N T I A L  D I F F E R E N C E  E O U A T I O N S  

The question arises whether an analogous classification scheme for 
classical discrete polynomials can be worked out for the differential difference 
equations (dde) of stochastic processes. The discrete state space analog of the 
FP equation (4) is 

dP(l, t) 
dt ~- az,~+l P(I + 1, t) + a~,~_l P(I -- 1, t) -- (az_a,~ + a~+l,~)P(l, t) (33) 

where P(l + j ,  t) is the probability that the system is in state (l E-j) at time t 
and where the a~.j are the transition rates from state j to I. We now ask for 
the solutions of Eq. (33) in terms of the discrete classical polynomialsF,(1), i.e., 

P(1, t) = ~ cnF,~(1)e ~"t (34) 
n 

in analogy with the eigenfunction expansion (14). A careful study of the 
literature (9) shows that almost all classical discrete polynomials satisfy 
difference equations whose coefficients at.~ are nonpositive over part or all 
of  the permissible range of I values. The coefficients a~,~ then cannot be 
interpreted as transition rates (which must necessarily be positive) and the 
differential difference equations of the form (33) with solutions (34) do not 
describe stochastic processes. The only exception is the Gottlieb polynomial (1~ 
which is the solution to a differential difference equation with positive 
coefficients over the whole allowed range of I. (11) 

By appropriate limiting processes one can transform the differential 
difference equation (we consider here any of the set of dde with positive 
coefficients) into Fokker-Planck equations of the form (2). This transforma- 
tion, depending upon the form of the coefficients a~,~, can give rise to the 
coefficients gl(x) and g2(x) listed in Table I. Some examples of such trans- 
formations have been worked out by Karlin and McGregor. (12) In the 
"diffusion approximation" some differential difference equations may thus 
have solutions in terms of the classical orthogonal polynomials. How well 
such "diffusion approximation" solutions approximate the solutions of the 
original differential difference equation remains an open question. 

N O T E  A D D E D  

After this paper was completed our attention was called to the fact that 
in 1962 Wong and Thomas covered essentially the same ground, except for 
our discussion of differential difference equations, in a paper published in an 
applied mathematics journal. (la~ Upon the suggestion of a number of our 
"chemical and physical" colleagues working in stochastic processes we have 
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decided to publ ish this paper  despite the overlap with the work of W o n g  and  
Thomas,  since their work apparent ly  is no t  familiar to the statistical physics 
fraternity. 
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